

CAPARDUS - Capacity-building in Arctic standardization development

Coordination and Support Action under EC Horizon2020 Grant Agreement no. 869673

Project coordinator: Nansen Environmental and Remote Sensing Center

Deliverable 8.2

Project website and dissemination material

Type: Other

Start date of project:	01 December 2019	Duration:	36 months
Due date of deliverable	: 31 March 2020	Actual submission date:	19 March 2020
		Updated version submitte	ed: 27 Nov 2021
Lead beneficiary for preparing the deliverable:		NERSC	

Authors: Stein Sandven

Version	DATE	CHANGE RECORDS	LEAD AUTHOR
1.0	19/03/2020	Version 1.0	S. Sandven
	19/03/2020	Reviewed by Hanne Sagen	
1.1	27/11/2021	Version 1.1	S. Sandven

Approval	Date: 27 Nov 2021	Sign.
		Skin Sandon
		Coordinator

DISSEMINATION LEVEL			
PU	Public, fully open	Х	
СО	Confidential, restricted under conditions set out in Model Grant Agreement		
CI	Classified, information as referred to in Commission Decision 2001/844/EC		

EXECUTIVE SUMMARY

The CAPARDUS public website, (http://capardus.nersc.no), was launched in March 2020. The website is the main method for dissemination of all project relevant information, such as public downloadable products, presentations, news and events related to the project work scope. Dissemination material such as brochure, fact sheets and other information will be posted on the website during the project. Furthermore, the website provides basic information regarding the project beneficiaries, their role and contribution to the project and links to relevant websites.

Table of Contents

TAB	LE OF CONTENTS	1
1.	INTRODUCTION	2
2.	THE PROJECT WEBSITE	2
3.	DISSEMINATION MATERIAL	2
U	ROJECT PRESENTATION PDATED MATERIAL IN NOVEMBER 2021 OSTER PRESENTATIONS IN 2021	7

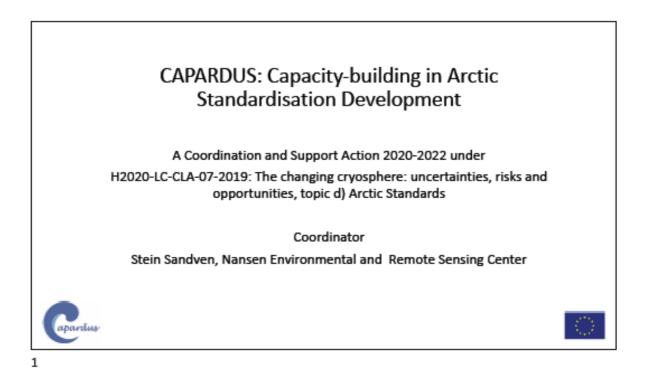
1. Introduction

The overall objective of CAPARDUS is to Establish a comprehensive framework for development, understanding and implementation of Arctic standards with focus on environmental topics. The framework will integrate standards used by communities active in the Arctic including research and services, Indigenous and local communities, commercial operators and governance bodies. This will support sustainable economic development, safe activities, emergency prevention and response, and improved understanding and conservation of the environment.

The public web portal (<u>http://capardus.nersc.no</u>) will be the main communication and outreach vehicle for CAPARDUS, which aims to connect to many Arctic projects, research communities, local communities and other stakeholders in the pan-Arctic region.

2. The project website

The project web portal is set up to provide general information about the project updated information on ongoing work, deliverables, major events and communication activities. The web portal will follow the EC guidelines to provide open information from the project. The web portal will be a vehicle of promotion of the project to the "external world" as well as to facilitate communication between the partners, the European Commission Services and collaboration institutions and organizations.


The key elements of the web portal are to:

- Facilitate open and easy access to information about the project, including ongoing work, results, publications, promotion and education material
- Facilitate for dialogue and feedback from external institutions, organizations and local community groups
- Prove useful links to related projects, programmes and organizations working with Arctic SDG goals
- Serve as administrative tool for the project coordinator and the partners, including internal communication and exchange of documents through a password protected area of the portal.

3. Dissemination material

Dissemination material will consist of brochure, fact sheets, posters, presentations, published articles, e-Newsletter and science-policy briefs. These will be posted on the website during the project. A project presentation and a project summary published on CORDIS are presented.

Project presentation

The UN sustainable

footprint. The Arctic

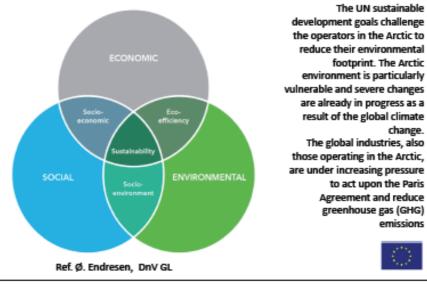
change.

emissions

reduce their environmental

environment is particularly

are already in progress as a

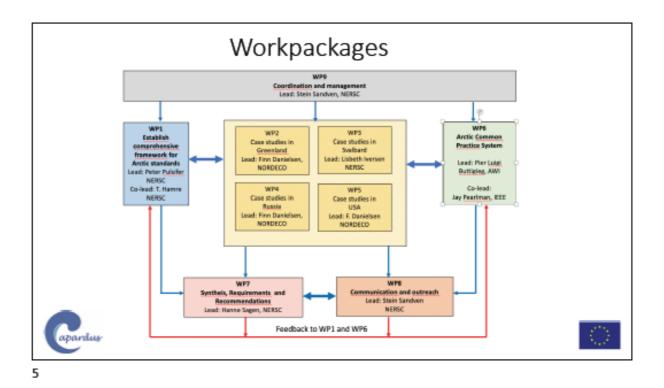

result of the global climate

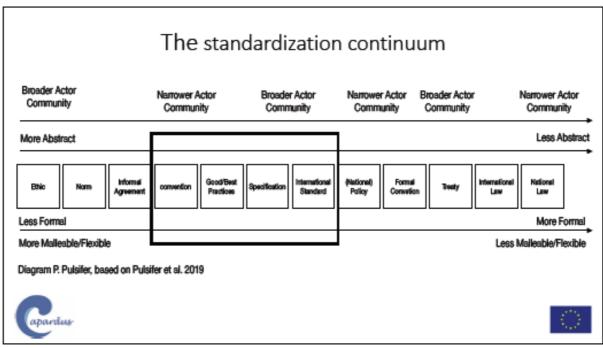
The global industries, also

to act upon the Paris Agreement and reduce greenhouse gas (GHG)

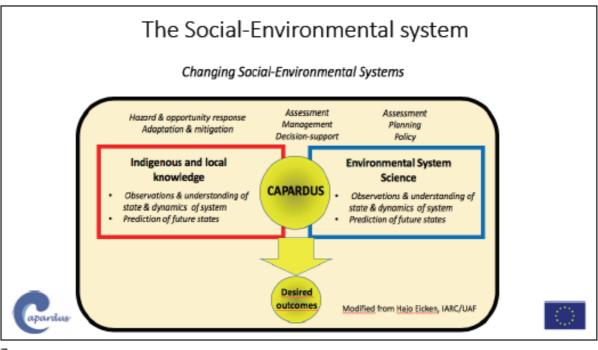
The three pillars of sustainable development

The three pillars of sustainable development are generally a pre-requisite for the development of a healthy society anywhere in the world. Also in the Arctic the three pillars need to be balanced when human activities are growing as a result of increased ship traffic, oil and gas exploration, tourism and other economic activities.

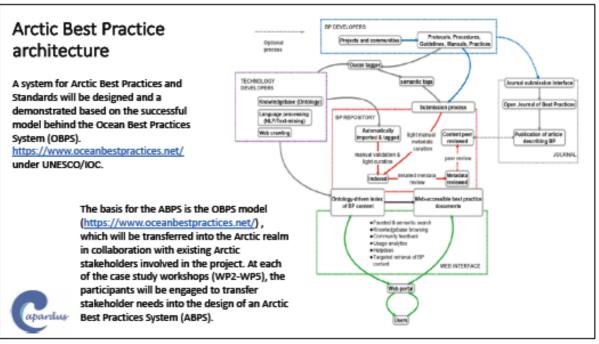



3

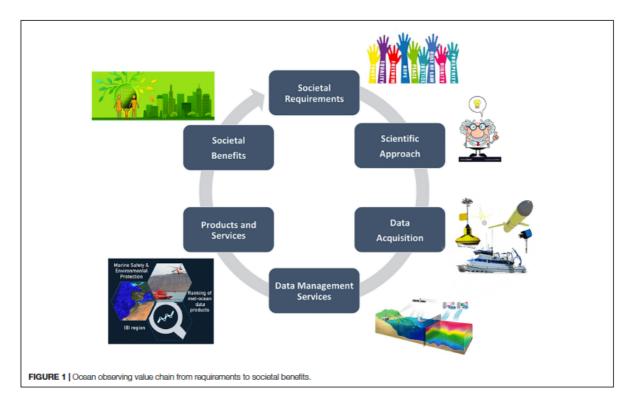
apardus


The	The Consortium				
	Institution	Country			
	Nansen Environmental and Remote Sensing Center (NERSC) coordinator	Norway			
	Nordic Agency for Development and Ecology (NORDECO)	Denmark			
	University of Greenland (UoG)	Greenland			
	Alfred Wegener Institute for Polar and Marine Research (AWI)	Germany			
	IEEE France section	France			
	Norwegian Institute for Nature Research (NINA)	Norway			
	University of Copenhagen	Denmark			
	Nansen International Environmental and Remote Sensing Centre (NIERSC)	Russia			
	University of Hokkaido, Arctic Research Centre	Japan			
	Sub-contractors	Country			
	Exchange for Local Observations and Knowledge of the Arctic (ELOKA)	USA			
_	University of Alaska Fairbanks/ International Arctic Research Center (UAF/IARC)	USA			
	Center for Support of Indigenous Peoples of the North (CSIPN)	Russia			
apardus	Element 84 (E84)	USA			

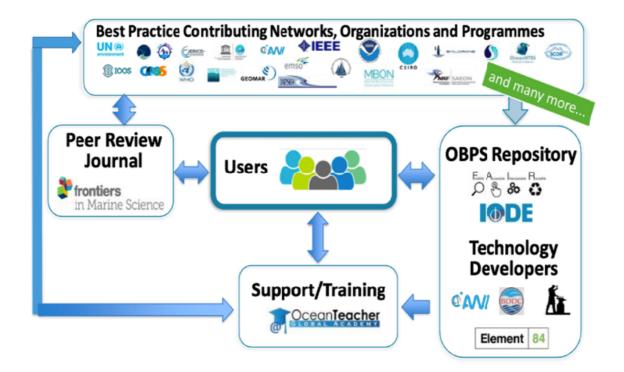
4



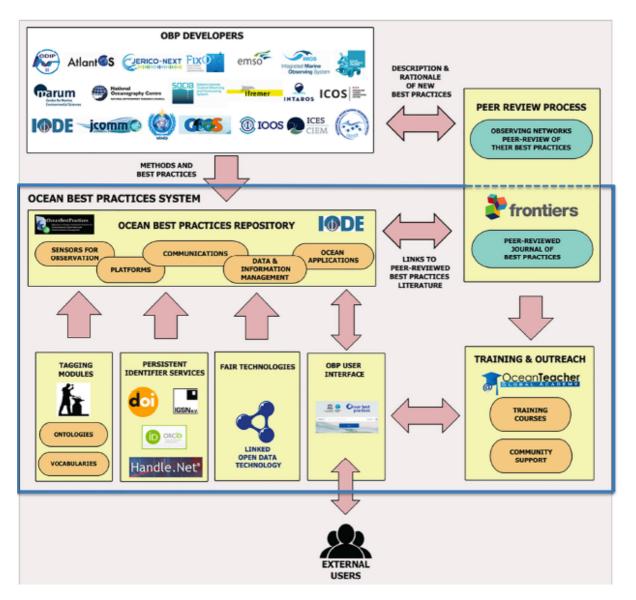
6

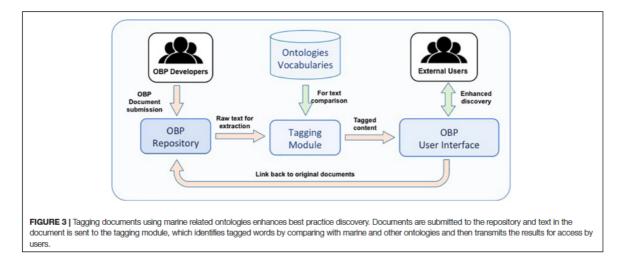


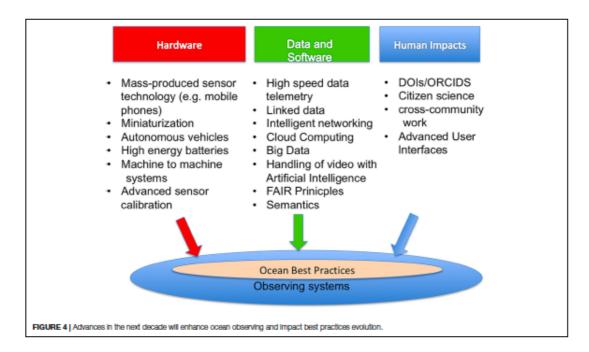
7



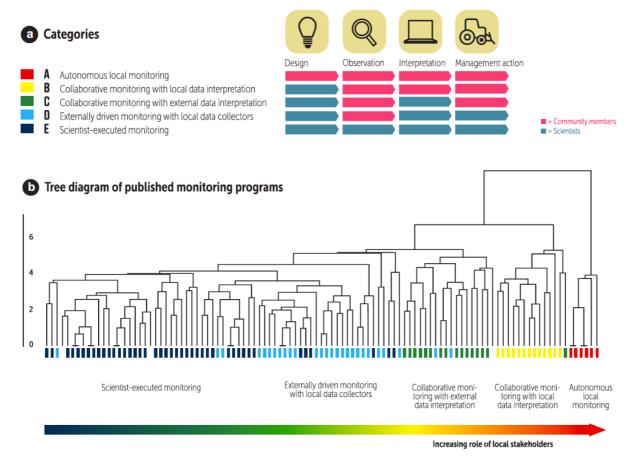
8


Updated material in November 2021


The value chain of ocean observing (Pearlman et al., 2019)


Update diagram of the Ocean Best Practice System (Pearlman, 2021)

OBPS structure (large box across middle of figure), core technologies (along the bottom of the box), and best practice provider organizations (in the box at top). Training is shown at the bottom right.(Pearlman et al., 2021)



(Pearlman et al., 2021)

(Pearlman et al., 2021)

Community-based monitoring

Danielsen et al., 2021 (doi:10.1093/biosci/biaa021)

Poster presentations in 2021

http://capardus.nersc.no

CAPARDUS: Capacity-building in **Arctic Standardisation Development**

A Coordination and

Support Action supported by H2020

There is no "standard Arctic", only a

variety of communities with own

culture, practices and standards

information within their fields.

and governance bodies

related to handling data and other

There is no framework for integrating

practices, guidelines and standards

between local communities, science

communities, commercial operators

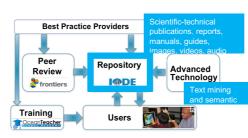
CAPARDUS documents practices,

framework for Arctic standards and

design of an Arctic Practice System

guidelines and standards among Arctic operators. This will form the basis for a

grant agreement


no 869673

Coordinator: Stein Sandven¹, deputy coordinator: Hanne Sagen¹ Participants: F. Danielsen², M. Enghoff², M. K. Poulsen², U. Jakobsen³, B. Poppel³, P. L. Buttigieg⁴, J. Pearlman⁵, F. Pearlman⁵, R. Garello⁵, S. J. Khalsa⁵, R. May⁶, M. R. Nielsen⁷, H. Meilby⁷, L Bobylev⁸, S.-I. Saitoh⁹, P. Pulsifer¹, T. Hamre¹, L. Iversen¹, N. Johnson¹⁰, O. Lee¹¹, N. Vronski¹²

Establishing a repository of Arctic practices

The objectives of CAPARDUS are to:

- Establish a comprehensive framework for development, understanding and implementation of Arctic standards
- Identify and document common practices as basis for development of standardization in the Arctic, building on the Ocean Best Practice System (www.oceanbestpractices.org)
- Engage researchers, service providers, Indigenous and local communities, commercial operators and governance bodies, together to design an Arctic Practice System

Documents are compiled in the Ocean Best Practice system under "Arctic Practices: https://repository.oceanbestpractices.org/handle/11329/1291

Standardisation continuum

CAPARDUS partners analyse existing documents according to the Standardisation Continuum on topics such as natural resource management, tourism, shipping, community planning and decision making in selected Arctic communities

Community Based Monitoring

Left: The communities involved in the resource observations in North in Disko Bugt (Photo : F. Danielsen). Right: Overview of data from 35 vest. Greenland. Centre: Registration of local resources om 357 monthly repo

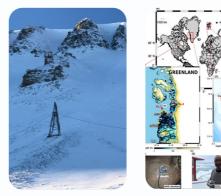
Partners

- Nansen Environmental and Remote Sensing Center (NERSC reansen Environmental and Kemote Sensing Center (NERSC)
 * Avdick Agency for Davelopment and Ecology (NORDECO)
 * Ilisimatusarfik, University of Greenland (UoG)
 * Altred-Wegener-Institute Heimhoitz Centre for Polar and Marine Research (AWI)
 * EEEF France Section
 * Norwegian Institute for Nature Research (NINA)
 * Liniscript of Compendence (UCC)

- [•] Norwegian institute for Nature Kesearch (NINA)
 [•] University of Copenhagen (UCPH)
 ⁸ Nansen International Environmental and Remote Sensing Centre (NIERSC)
 ⁹ Hokkaido University Arctic Research Center
 ¹⁰ Exchange for Local Observations and Knowledge of the Arctic (ELOKA)
 ¹¹ University of Alaska FairbanksInternational Arctic Research Center (UAF/IARC)
 ¹² Center for Support of Indigenous Peoples of the North (CSIPN)

Community-based monitoring (CBM) is a method where indigenous and local communities are directly involved in environmenta data collection. An example is from North-West Greenland where the Qegertalik Municipality and NORDECO with many partners are developing community observing (figures to the left). Fishermen and hunters routinely observe the environment in their respective communities and report to the observing network PISUNA https://eloka-arctic.org/pisuna-net/en CBM is a useful method to document living resources, promote local discussion and shorten the time from observation to decision.

Poster 3021


Benefits of co-creation in planning for safety, equity and sustainability on Svalbard

Lisbeth Iversen

Affiliation: Nansen Environmental and Remote Sensing Center, NERSC and Oslo School of Architecture and Design, AHO

Planning for sustainable development, environmental monitoring and protection of cultural heritage and resources, as well as safety for all citizens, is challenging for local communities to manage, also in the Arctic. This is caused partly by climate change and more frequent extreme weather conditions and disasters. Changes in international relations, demography and economy, are also framing the context of planning and development. Svalbard is experiencing rapid climate change, flux in the population, and uncertainty connected to planning, housing and future jobs.

Linking top-down, governmental initiatives and plans with bottom-up approaches and planning initiatives from the community level, and knowledge from best practice from citizen science and community based monitoring programs (CBM), is not always easy. Co-creation and co-production of kowledge has been addressed over the recent years in public sector and public management. It has not been addressed in the same way connected to planning and coordination of research topics across actors and sectors. Co-creation in planning processes in the Arctic in general, and on Svalbard specifically could provide broad knowledge and help identifying gaps in data and research, required to make more sustainable decisions, enable environmental monitoring, flexibility, innovation as well as rapid and effective responses to sudden incidents.

INTAROS T4.3 Pilot CBM networks Greenland & Svalbard. Improved detection and data support for understanding seismic events. With locals, fishermen and hunters. Led by GEUS and UiB

A participatory and asset based community development approach needs to be built on trust and long term collaboration to strengthen the social capital among the actors. This provides benefits for society and all actors involved. It is important to establish networks and platforms for partnership, coordination and co-creation of knowledge. (UN Goal 17 and 17.17). One example is the Svalbard Social Science Initiative,SSSI, which is bidthe bidthe statement of the statement of building bridges across social and natural science. Field work, workshops, cross institutional seminars and international research project like INTAROS and CAPARDUS have also provided important outcomes of methods and approaches connected to Citizen science and Community Based Monitoring, CBM. Creating engagement through a Penta helix-model and through Placemaking methods have been useful approaches in my ongoing research.

Based on the research and experience from the INTAROS and CAPARDUS projects, and an ogoing Public Sector Phd project at AHO, an attempt has been made to test and map methods and tools Aricy, and an emitting the been made to reach and map memodes and of co-creation connected to environmental monitoring, planning and urban development. Participatory planning processes, and co-creation of scientifict knowledge and local knowledge, have provided a framework for more holistic and coordinated place leadership and sustainable management. For results and more reading



Eicken et al, 2021

2. Dialogue/ workshop: cruise operators, scientists, decision-makers. Longyearbyen March 2019. Report available at: http://www.intaros. eu/media/1635/2019-report-aeco-workshop-v4.pdf

3. In May 2021, the book Community-Based Monitoring in the Arctic was published by University of Alaska Press (https://press.uchicago. edu/ucp/books/book/distributed/C/bo70275667.html)

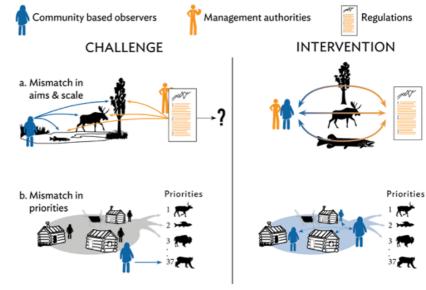
Connecting top-down and bottom-up approaches in environmental observing

Lessons for the Arctic and a review of programs across the globe


Hajo Eicken • Finn Danielsen • Josephine-Mary Sam • Maryann Fidel • Noor Johnson • Michael K. Poulsen • Olivia A. Lee • Katie V. Spellman • Lisbeth Iversen • Peter Pulsifer • Martin Enghoff

Observations inform responses to rapid Arctic change

- 1. How to foster better linkages between bottom-up, community-driven and top-down, regional/global-scale observing?
- 2. Review of 124 sustained observing activities across the globe
- 3. Workshops & surveys of 30 Arctic communitybased monitoring programs



3

Challenges & Interventions

- Surveyed 30 Arctic community-based programs & held workshops
- Recognizing good practice helps address challenges (2 out of 6 approaches shown here)

Haio Eicken • International Arctic Research Center

----- END of DOCUMENT------

Δ

This report is made under the project

Capacity-building in Arctic standardization development (CAPARDUS)

funded by the European Commission Horizon 2020 program

Grant Agreement no. 869673.

Project partners:

No	Acronym	Participant Legal Name	Country
1	NERSC	STIFTELSEN NANSEN SENTER FOR MILJO OG FJERNMALING	NO
2	NORDECO	NORDISK FOND FOR MILJØ OG UDVIKLING	DK
3	Ilisimatusarfik	Ilisimatusarfik, Grønlands Universitet, University of Greenland	GL
4	AWI	Alfred-Wegener-Institut Helmholtz-Zentrum fur Polar- und	DE
		Meeresforschung	
5	IEEE	IEEE France Section	FR
6	NINA	STIFTELSEN NORSK INSTITUTT FOR NATURFORSKNING NINA	NO
7	UCPH	KOBENHAVNS UNIVERSITET	DK
8	NIERSC	Scientific foundation Nansen International Environmental and Remote	RU
		Sensing Centre	
9	ARC-HU	Arctic Research Centre, Hokkaido University	JP

Subcontractors

ELOKA	Exchange for Local Observations and Knowledge of the Arctic	USA
UAF/IARC	University of Alaska Fairbanks/ International Arctic Research Center	USA
CSIPN	Center for Support of Indigenous Peoples of the North	Russia
E84	Element 84	USA