Small Friendly Wavebuoy & **OpenMetBuoy**

Gaute Hope & Jean Rabault Førland gauteh@met.no / 2022

Motivation

- Most incidents happen near the shore and inside fjords
- Many measurement positions are better than having a few fixed moorings
- Drifters are needed for trajectory modeling
- Lightweight, drifting, wave-buoys can be used for surf-measurements
- Higher bandwidth enables us to transmit timeseries of high frequency measurements, hopefully this means that we can start looking at breaking waves
- Low-cost and self-built enables us to have many units, and customize for our need.

https://github.com/gauteh/sfy

Porsangerfjorden, krabbeyngel (HI / MET)

Unstad-beach, surf

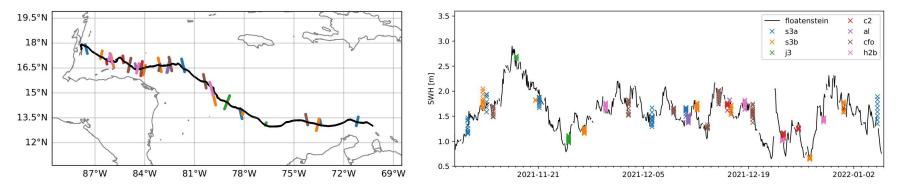
Vefsnfjorden (FOU-HI)

Klakken (UIB, GFI), moored close to Hustadvika

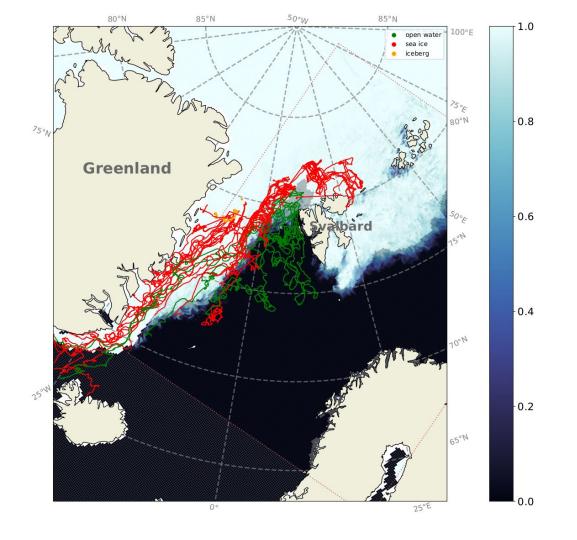
Byfjorden, Bergen - S&R in hotspots

Bunnefjorden, Oslo (FOU-HI)

Jæren, surf


https://wavebug.met.no (token: wipeout)

- Sample rate: **52 Hz sampling rate**, filtered (FIR) and downsampled from 208 Hz input to AHRS algorithm.
- Telemetry: Full time-series through **cellular network**, GSM, LTE.
- Georeference and time: GPS/GNSS
- On-board storage: SD-card
- Cost of parts: About 2000 NOK / 250 USD.


OpenMetBuoy / Floatenstein

- total cost of the parts: 562USD (Nov. 2021 price).
- typical assembly time: around 1-1.5hr per buoy when producing a small series efficiently.
- cost of the iridium communications: 42USD / month if using only GPS, up to 108USD / month v using GPS and high frequency wave measurements (Nov. 2021 price).
- battery autonomy: i) 4.6 months using 2 Li D-cells, with GPS and wave measurements activate Over 1 year using 2 Li D-cells and GPS tracking only. iii) Battery life scales linearly with the nur D-cells included in the instrument.
- typical detection threshold for waves in ice: 0.5cm at 16s period, even better detection threshol obtained at higher frequency due to using an IMU to perform the measurements.

J. Rabault

J. Rabault

OpenMetBuoy: deployments

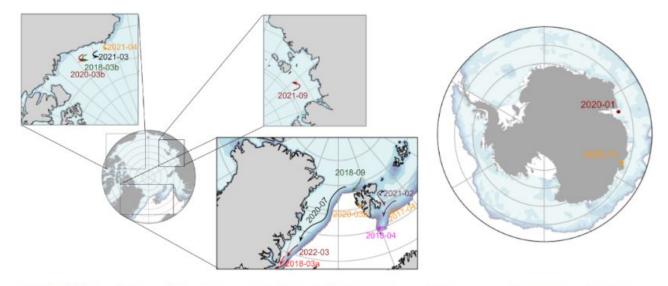


Figure 2. Overview of the deployments present in the dataset. The SIC map show the averaged SIC over the local winter month in the Arctic and Antarctic.

```
A dataset of direct observations of sea ice drift and waves in ice
J. Rabault et. al.
2022
```

OpenMetBuoy: data archives

https://github.com/jerabaul29/data_release_sea_ice_drift_waves_in_ice_marginal_ice_zone_2022/tree/m aster/Data/2022_March_East_Greenland/Instruments_V_2021a

```
> ncdump -h data_drift_waves_Greenland_2022_seals_cruise.nc
netcdf data_drift_waves_Greenland_2022_seals_cruise {
    dimensions:
```

```
trajectory = 2;
    observation = 3356 ;
    len of name = 16;
    frequency = 55;
variables:
    float frequency(frequency);
         frequency:long name = "frequency bins of the spectra";
         frequency:units = "s-1";
    char trajectory id(trajectory, len_of_name);
         trajectory id:standard name = "platform id";
         trajectory id:long name = "platform name";
    char message kind(trajectory, observation);
         message kind:long name = "whether the current [trajectory, observation]
```

contains GPS [kind G], or Waves [kind W], or None [kind N, in case of failed transmission] data.";

```
double time/trainctony observation) :
```

microSWIFTs (Applied Physics Laboratory, UW, Seattle)

MICROSWIFT EXPENDABLE WAVE BUDY

Specifications

1 L Naglene bottle
9.2 cm (3.6 in) diameter, 21.4 cm (8.4 in) length
0.9 Kg (2.0 lbs)
Rechargeable LiFePO ₄ , 2 cells at 19.2 Wh and 141 g each
Satellite (Iridium SBD)
WiFi
Raspberry Pi Zero
GlobalTop FGPMMOPA6H
FXOS8700CQ (9 dof)
Adafruit TMP36
microSD card
Python, https://github.com/alexdeklerk/microSWIFT
4 Hz (GPS), 12 Hz (IMU)
61 cm (24 in) diameter with 63.5 (25 in) bridle
2 days

Hourly telemetry products and accuracy

	Position (lat, lon)	± 5 m	
	Significant wave height, Hs	± 0.1 m	
	Peak wave period, Tp	±1s	
	Dominant wave direction, Dp	± 15 deg	
	Scalar wave energy spectrum, E(f)	± 10 ⁻² m ² /Hz, 0.05 < f < 0.5 Hz	
	Directional moments of the spectrum (a1,a2,b1,b2)	$\pm 0.1, 0.05 < f < 0.5 Hz$	

Public server for telemetry products (data tab): http://www.apl.uw.edu/SWIFT Live map for active buoys (rolling 3 hr window): http://swiftserver.apl.washington.edu/map/ GitHub repository for fetching telemetry and post-processing (inc. raw wave displacements): https://github.com/ithomson-apluw/SWIFT-codes GitHub repository for fetching telemetry and post-processing (inc. raw wave displacements): https://github.com/ithomson-apluw/SWIFT-codes

Open source: hardware and software

☆

•			D Readme
gauteh cli show last contact +	handle best_" × 7a8:	Lass 29 minutes ago 326 commits	合 3 stars
github/workflows	cl: work around git-security	2 days ago	 5 watching
hardware	add coloredlogs	10 days ago	9 0 forks
afy-buoy	db: don't add unknown buoys on get	2 days ago	
sty-dashboard	buoy: hasGps + lastFile	last month	Releases
isty-data	data: order by received	2 hours ago	No releases published Create a new release
sty-processing	cli show last contact + handle best_*	29 minutes ago	
tools	add svl uploader	8 months ago	Packages
gitignore	Ignore .envrc	5 months ago	No packages published
.gitmodules	rm amblq-sdk submodule	7 months ago	Publish your first package
B README.md	hw: assembly notes	19 days ago	Environments
C environment.yml	add coloredlogs	10 days ago	Environments
E README.md		0	Languages
Costy-data passing Costy-buoy	Rust 65.6% Python 22.5% TypeScript 7.5% GDB 1.0% Makefile 0.9% Other 1.1%		
sfy-buoy - the firmware f hardware - hardware an			
sly-data - the server scr.			
 sfy-processing - python 			
Acknowledge			
This work is based on the O			

C C C C C C C C C C C C C		ts	< * * * • • • • • • • • • • • • • • • •
P main ▼ P 3 branches O tags if a prabaul29 Update README.md		Go to file Add file - Code - fa881f8 7 days ago ③161 commits	About An easy to build, affordable, customizable, open source instrument for
development_environment	Create README.md	8 months ago	oceanographic measurements - with global Iridium coverage
end_user_manual instrument_hardware	add note about iridium invoicing Update PCB.md	5 months ago 7 days ago	따 Readme 화 MIT license ☆ 18 stars
legacy_firmware .gitignore	Add utilities packaging into / displaying netcdf Add example script share cookies	last month 8 months ago	 2 watching 2 forks
LICENSE	Initial commit Update README.md	11 months ago 7 days ago	Releases
latest_preprint_MDPI_2022.pdf	Add latest preprint	8 months ago	No releases published
i≣ README.md A question? => open an issue;	i∃ README.md A question? => open an issue; An idea of improvement? => open an issue		Packages No packages published

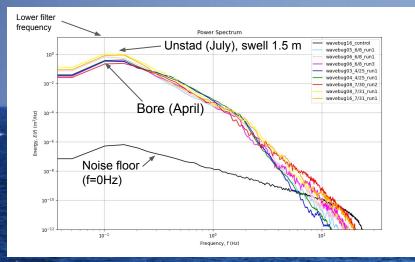
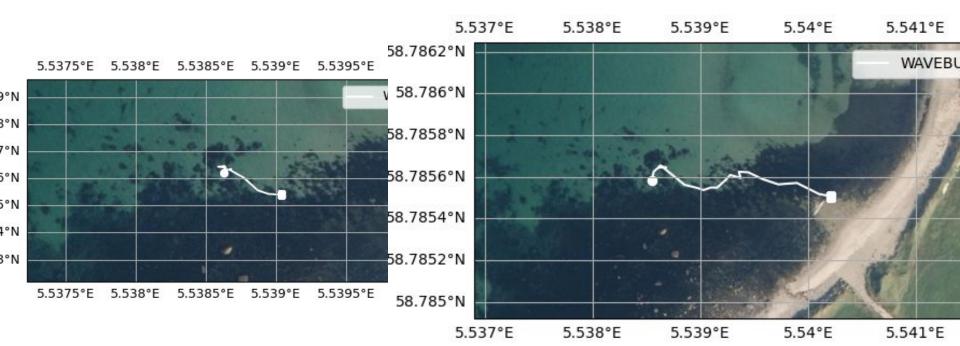
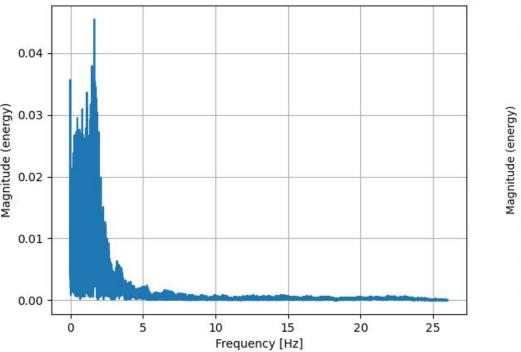


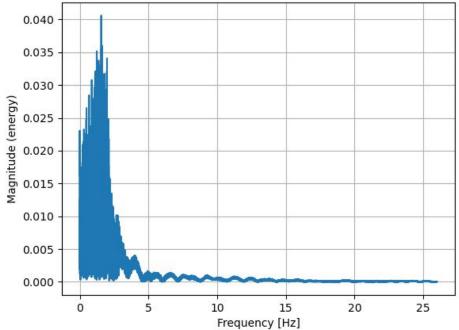
Photo: Torunn Irene Seldal

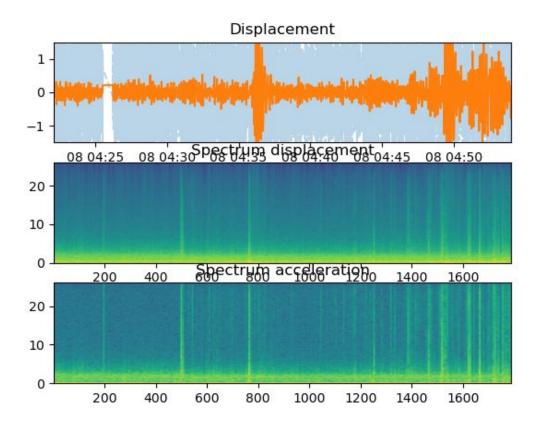
Borestranda (April 2022)

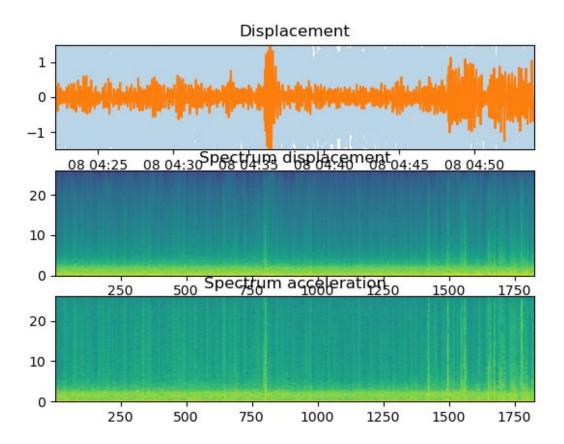

https://www.youtube.com/watch?v=iUGFtYr9HIY

Video by: Torunn Irene Seldal

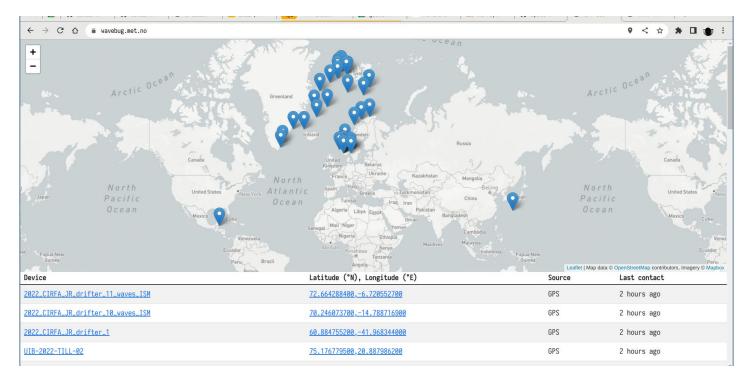

Fuglingen – Bore


Bøye 6




Spektrum

Bøye 6



Dashboard and data hub

https://wavebug.met.no/ (token: wipeout)

Data pipeline

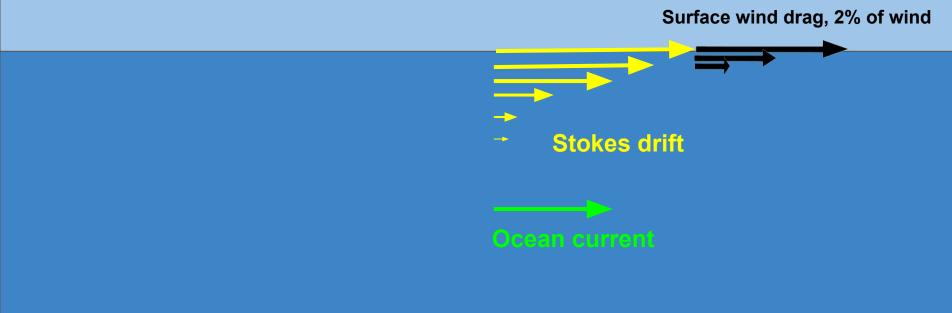
Iridium:

- Buoy -> Iridium SBS to provider (Rockblock)
- 2) Provider -> Email / HTTP-Post / HTTP-api
- 3) Store in DB (sqlite) (data-hub)
- 4) Accessible through API
- 5) Process to CF compatible NetCDF files

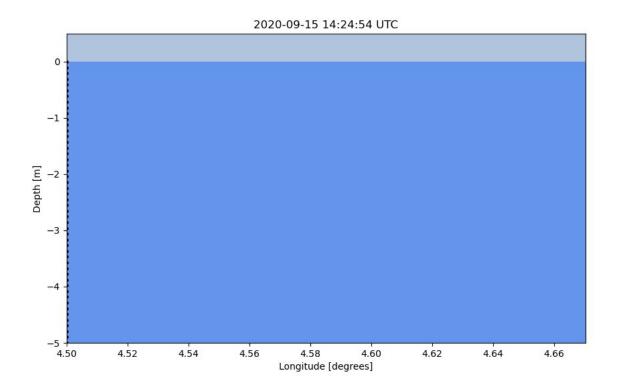
Cellular:

- 1) Buoy -> Cellular provider (event)
- 2) Provider -> HTTP post to data-hub
- 3) Store in DB (sqlite) (data-hub)
- 4) Accessible though API
- 5) Process to CF compatible NetCDF files

tools: https://github.com/OceanGlidersCommunity


trajectory data:

https://cfconventions.org/Data/cf-conventions/cf-conv entions-1.7/build/aphs04.html


\$ sfydata axl ts bug18 --tx-start 2022-09-20 --tx-end 2022-09-21 --start 2022-09-20T09:15:00 --end 2022-09-20T10:15:00 --file bug18.nc

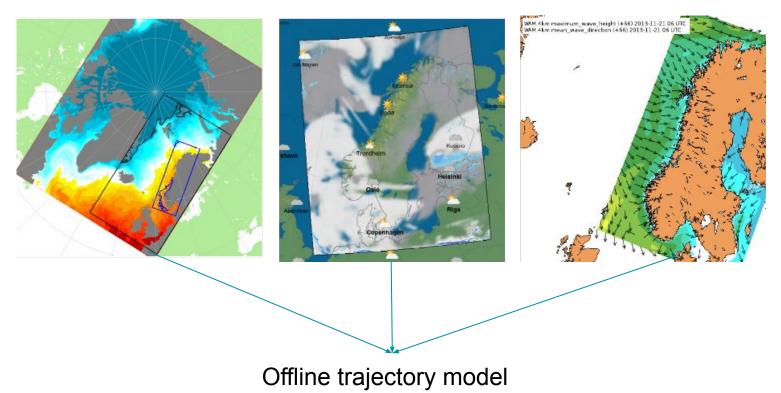
Effect of drifter drogues

Horizontal drift

Vertical drift profile

OpenDrift

Knut-Frode Dagestad, Gaute Hope



Offline and online trajectory models

Ocean model

Atmospheric model

Wave model

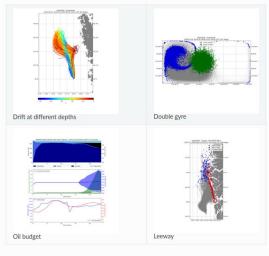
http://opendrift.github.io

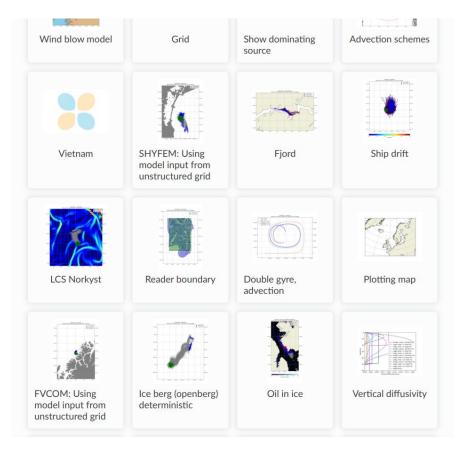
$\leftarrow \rightarrow$ C \cong opendrift.github.io

Search docs

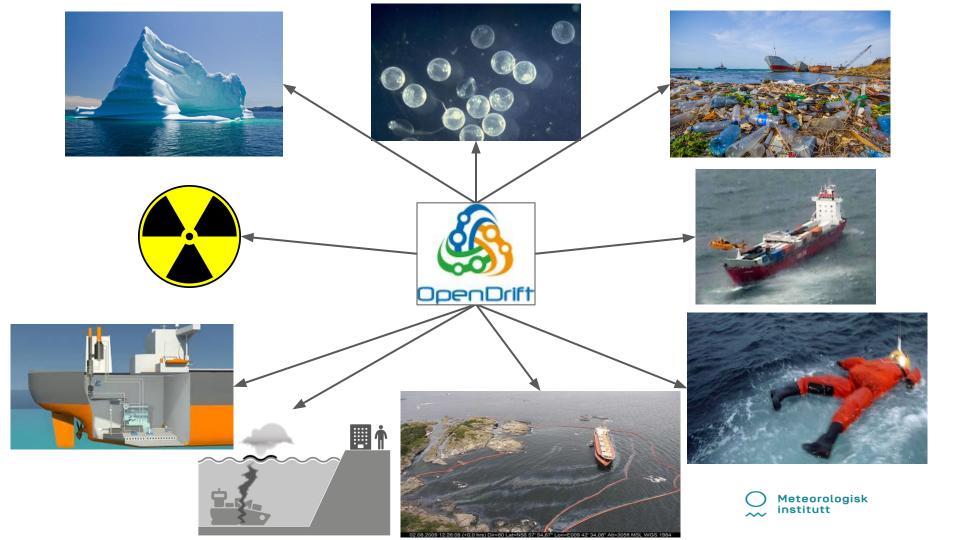
Introduction to OpenDrift

History Installing OpenDrift Tutorial Theory How to choose which model to use How to write a new module Gallery Oil types Interaction with coastline Graphical User Interface


Publications API Reference * Introduction to OpenDrift


View page source

Introduction to OpenDrift


OpenDrift is a software package for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere.

OpenDrift is open source (available on GitHub), and is programmed in Python. As the software is very generic, it is rather a "framework" than a "trajectory model" in the traditional sense. Trajectory models for specific purposes (e.g. oil drift, search and rescue, larvae drift etc) may reuse all common functionality from the core model, and need only implement a Python Class describing the purpose-specific processes (physics/biology etc). See Specifications and background requirements and Data model for more detailed information.

Some key features of OpenDrift are:

Naming convention (CF) allows ANY model to be used with ANY reader

www.cfconventions.org

class Leeway(OpenDriftSimulation):

required_variables = ['x_wind', y_wind', x_sea_water_velocity', 'y_sea_water_velocity', 'land_binary_mask'] \$ ncdump -h https://thredds.met.no/thredds/dodsC/sea/norkyst800m/1h/aggregate be float Uwind(time, Y, X); Uwind:long name = "surface u-wind component"; Uwind:units = "meter second-1"; Uwind:time = "ocean time"; Uwind:grid = "grid" ; Uwind:location = "face"; Uwind:field = "u-wind, scalar, series"; Uwind: FillValue = 1.e+37f; Uwind:standard name = "x wind"; Uwind.coordinates - "Ion lat", Uwind:grid mapping = "projection stere";