

ARCSAR

@arcsarnetwork

www.ARCSAR.eu

The ARCSAR network

addresses cross-border cooperation between emergency preparedness and response authorities, industry groups and companies, academia, voluntary organizations, and local communities.

20 partners from 12 countries

Associated partners

- + 90 Associated partners
- Academic institutions, practitioners, industry and government
- ARCSAR Newsletter and other notifications
- Access to the ARCSAR Innovation Arena
- Invitation to all open events

Interested to contribute? Please join the ARCSAR network

ARCSAR network is a live, constantly growing community that brings together authorities, digeneous people, academia, SMEs, rnments and other organizations within the C search and rescue domain. All in one

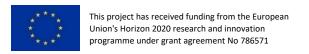
NETWORK

Network & Cooperate

If you become a member of the ARCSAR network, your organization will become a member of our extensive list of organizations that operate in the Arctic region. Instantly opening a vast array of oportunities.

Innovate together!

As a network member, you will also gain access to the Innovation Arena. There, you can share, develop, vote and discuss new ideas, build teams and much more.


Broaden your reach!

As a member, finding others in the ARCTIC domain is one click away. The Arctic network is a constantly growing community.

Follow important events and project results

Our network coordinates a broad range of events in which our partners share results from workshops, conferences, demos and so on. In delivering these outputs, the network extends invitations to our associated partners. Likewise your organisation may do the same.

ARCSAR'S AIM IS TO ADDRESS AND ENHANCE PREPAREDNESS TOWARDS SAFETY THREATS EMERGING FROM THE INCREASED COMMERCIAL ACTIVITY IN THE ARCTIC AND NORTH ATLANTIC REGION

- CREATING A NETWORK OF STAKEHOLDERS AND SUPPORTING NETWORKING
- FACILITATING TRAINING AND KNOWLEDGE EXCHANGE
- UNCOVERING NEEDS AND MAPPING SOLUTIONS
- ENHANCING SAFETY IN THE ANA REGION

ARCSAR workflow in a nutshell

Establishing ARCSAR network and Innovation Arena

Mapping of practitioner needs for innovation and knowledge exchange

Knowledge exchange and competence building events, i.e. exercises and workshops

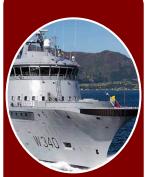
Mapping and indentifying uptake and barriers for innovations

Recommendations for standardization and policy on innovation in technology, methods and procedures

Building trust and increasing collaboration

Brief scenario for LIVEX, MRO 31st August

- An expedition cruise vessel in remote areas north of Nordaustlandet (played in Isfjorden for safety reasons)
- MS Quest, 54 pax and 25 crew. Fire in engine room, they were able to extinguish the fire, but the vessel engine is destroyed, and emergency generator failed to start. Therefore, no power onboard and a lot of smoke in the superstructure.


Main players involved in the exercise

JRCC North Norway

Governor of Svalbard

Norwegian
Coast
Guard,
NOCG
vessel
BArentshav

330 Squadron, AW101 SAR Queen

M/S Quest

Polar Quest home office

Association of Arctic Expedition Cruise Operators

UAS Norway

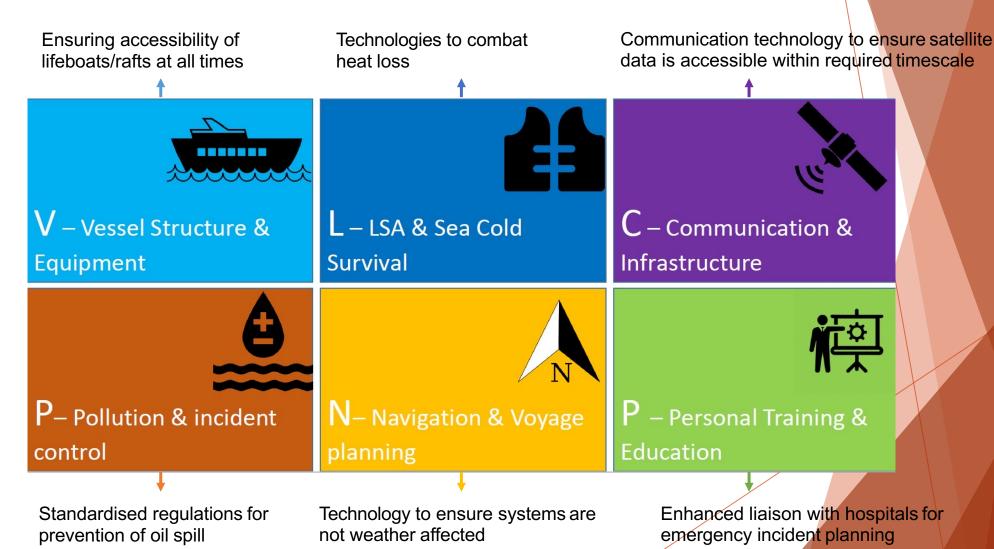
Cooperation effort

The lectures on board the M/S Quest

- Safety and behavior
- ▶ Guide lectures
- ► How to act as an observer and evaluate in a SAR exercise
- ► Thermal protection in life rafts
- Moderated panel discussion on evacuation methods
- ► O-VRAT Risk assessment tool for landings
- ► AI-ARC solution for Arctic Exercises and incidents
- Satellite technology testing by e-Geos and Norwegian Space Agency
- ► EPPR/ACGF Casualty tracking project

Example topics during the outings

- Polar bear safety
- Safety equipment ashore
- Polar Code equipment
- How to act if someone gets injured
- Safety and glacier fronts
- Steep terrain challenges
- Zodiac as shelter
- Survival camp



Mapping of practitioners' need for innovation and knowledge exchange in the ANA region

Min
$$a = \frac{w_1 n_1}{I^*} + \frac{w_2 (n_2 + p_2)}{B^*} + \frac{w_3 \sum_{i=1}^6 \sum_{j=1, j>i}^6 (n_{ij} + p_{ij})}{C^*}$$

Subject to,

$$\sum_{t=1}^{6} i_{ts} x_{ts} + n_1 - p_1 = I^*$$

$$\sum_{t=1}^{6} \sum_{s=1}^{N_t} (\alpha_{ts} + \beta_{ts} - \gamma_{ts}) X_{ts} + n_2 - p_2 = 0$$

$$\sum_{s=1}^{N_i} x_{is} - \sum_{s=1}^{N_j} x_{js} + n_{ij} - p_{ij} = 0 \ i, j = 1, \dots, 6, \ j > i$$

$$\sum_{t=1}^6 \sum_{s=1}^{N_t} d_{ts} x_{ts} \le D$$

$$x_{ts}$$
 binary $t = 1, ..., 6; s = 1, ..., N_t; n_1, p_1, n_2, p_2 \ge 0; n_{ij},$
 $p_{ij} \ge 0 \ i, j = 1, ..., 6, j > i$

PICK methodology

Sub-Need Title	Category	Description of Sub-Need
Collaboration on how to meet "5 day" requirement of polar code	Possible	The International Maritime Organization (IMO) based regulation, the International Code for Ships Operating in Polar Waters, also known as the Polar Code, was implemented in January 2017. The code enforces various requirements in respect of search and rescue equipment including 'those evacuating from a vessel in distress in polar waters should be able to survive a minimum of five days in the rescue equipment, be it in a lifeboat, a life raft or in equipment arranged on the ice'. In cooperation with several universities and institutions, the Norwegian Coast Guard conducted a search and rescue exercise in 2016 in Svalbard, in order to evaluate this requirement and the usability of the standard survival equipment. The exercise report (Solberg, Gudmestad, Kvamme & Spitzbergen, 2016) concluded that, if the expected five-day rescue period utilizing the standard SOLAR approved equipment required by the Polar Code is to be fulfilled, the related technology must be developed in order for the equipment to be realistically functional. As the Polar Code is open to interpretation by each vessel operator performing their own assessments, the assessment on is suitable and required may differ across the industries. (Ikonen, 2017; Solberg et al., 2016) There is a need for collaboration between Arctic SAR stakeholders to collaborate and develop protocols to ensure this requirement is fulfilled in all circumstances and territories, and map what the barriers
Ensuring sufficient satellite coverage of ANA region	Challenge	are for why it could not be fulfilled (Kruke & Auestad, 2021). The Arctic satellite connections, broadband, radio coverage and other means of communication are limited due to remoteness and the lack of relevant infrastructure, however satellite coverage around the Arctic areas is increasing rapidly, as more satellites are sent to cover the whole Arctic during the next few years. There is a need to map which satellite services are currently available to Arctic operations and what is still needed, especially from the viewpoint of a smaller operator that is still lacking
Communication Technology to ensure satellite data is accessible within required timescale	Challenge	needed coverage for High North operations. Due to the satellite passings and lack of 24/4 coverage of satellite in the Arctic, there are latencies in receiving satellite data for i.e. navigation, situational awareness, up-to-date ice charts, and ice drift and wind data. Some private operators may be able to provide real-time satellite data however the cost may be a barrier.
Need for enhanced batteries with longer life for usage in ANA region	Challenge	Due to the conditions in the Arctic, which may be a barrier. Due to the conditions in the Arctic, which may especially during winter time be very harsh, freezing temperatures affect battery life in various applications i.e. radio communications equipment, phones, drones and other equipment that may be necessary in an emergency situation or for navigation.
Standardised regulations for prevention of oil spill	Implement	More experience is needed to fully understand the limitations in current MER procedures and what plans exist for future standardised procedures in the High Arctic. The Arctic Council also already has the MOSPA agreement, with preventative measures. As part of MOSPA, Arctic States have agreed to (i) maintain a national system to promptly and effectively respond to oil pollution incidents, including a minimum level of available oil spill response equipment, training procedures, and communication capabilities; (ii) share information about national authorities to facilitate effective communication across borders in case of an emergency and (iii) assess oil pollution incidents in the Arctic and immediately inform all Parties to the agreement whose interests could be affected.

Developing SOPs for maritime SAR operations in RN environments

Participants

Hekkingen fyr/ Ytre Malangen (2018: 12) Vestfjorden (2018: 1) Sweden Sjøforsvarets hovedbase Haakonsvern ∠Norway [2018:8)Marstein fyr/ Korsfjorden Baltic Sea (2018: 6) North Sea

VISIT OF ALLIED NPVs

Visit in coastal waters (without port

USS New Mexico, Tromsø.

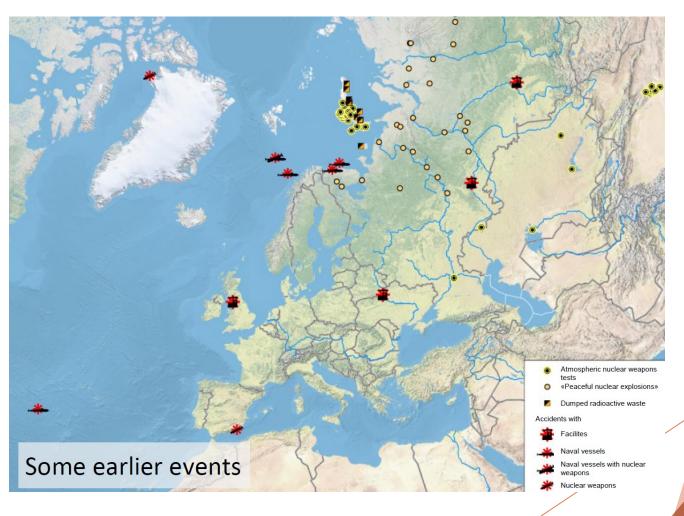
Photo: Barents observer

Traffic of civilian NPVs

Verdens største atomisbryter seiler langs Norge

Verdens største atomisbryter legger onsdag ut på en flere dager lang ferd langs hele norskekysten. Bellona frykter en alvorlig ulykke med utslipp av radioaktivt avfall.

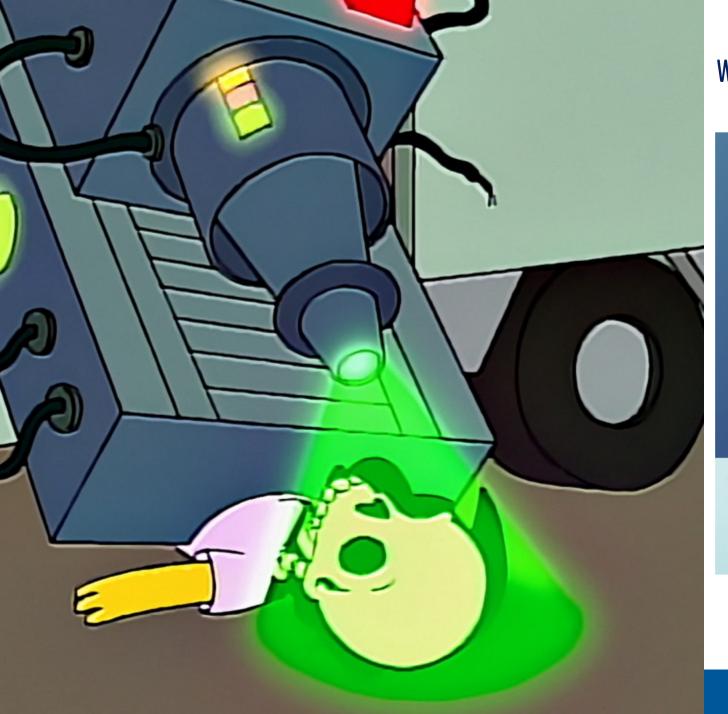
Traffic of Russian nuclear icebreakers includes to/from Bay of Finland and Murmansk (along entire Norwegian coastline)



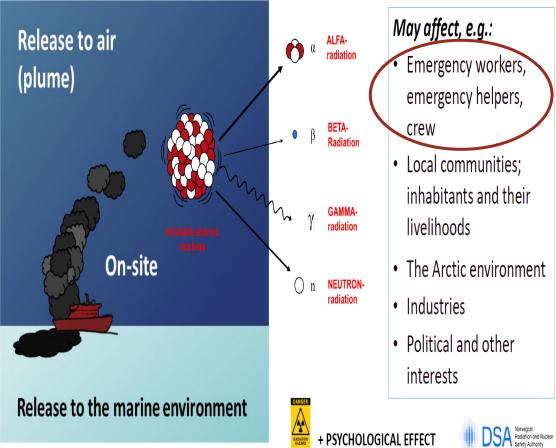
Towing of floating NPP Akademik Lomonosov along the entire Norwegian coast (2018)

Photo: Rosatom

Low probability, high risk



Date	Vessel involved	Geographical area	Co-ordinates		Depth (m)	Radioactive material	Recovered	Total activity	Marine monitoring	Release occurred	Estimated activity released
			Latitude	Longitude	(31)			activity	monitoring	occunca	10101000
1967	Submarine ¹	Kola Bay off Severomorsk	69° N	33° E	-	Reactor core	Yes	-	-	-	-
11 Apr 1968	Diesel submarine K- 129 (a)	Pacific 1230 miles from Kamchatka	40° 06' N	179° 57'	6000	2 Nuclear warhead(s)	Yes	37 GBq	-	-	_
10 Jan 1970	Submarine ¹	Mediterranean Sea Bay of Naples	-	-	-	Nuclear torpedoes	No	-	-	-	-
8 Apr 1970	Nuclear submarine K-8	Bay of Biscay	-	-	4000	2 reactors	No	9.25 PBq	-	-	-
	(b)					Nuclear warhead(s)		30 GBq			
Apr 1970	Submarine ¹	Northeast Atlantic	-	-	_	Reactor core	No	-	-	-	-
						4 nuclear weapons					
Sep 1974	Kashin-class destroyer ¹	Black Sea	-	-	-	Nuclear weapons	No	-	-	-	-
1978	Lighter "Nikel" (c)	Off Kolguyev Island Southeastern Barents Sea	69°31' N	47° 56.03°		Unenclosed solid radioactive LLW and ILW	No	1.5 TBq	-	-	-
Jun 1983	Submarine ¹	Northwest Pacific off Kamchatka	-	-	-	Reactor core	No	-	-	-	_
		Peninsula				8 nuclear weapons					
8 Feb 1983	Satellite "Cosmos 1402" (d)	South Atlantic 1600 km East of Brazil	-	-	-	Reactor core U-235, Sr-90, Cs-137	No	1 PBq	-	-	-
10 Aug 1985	Nuclear submarine K- 431 (e)	Soviet Pacific Coast, Chazhma Bay Shkotovo-22	43° N	132° E	-	Reactor core	Yes	185 TBq	Yes	Yes	-
6 Oct 1986	Nuclear submarine K- 219 (f)	Atlantic Bermudas	31°29' N	54° 42' W	5500	2 reactors	No	9.25 PBq	-	-	-
20 Aug 1987	RTG power supply (g)	Sea of Okhotsk, off Sakhalin island	50° 02 N²	144° E	~30	Sr-90 sealed source	No	25.3 PBq	-	-	-


Date	Vessel involved	Geographical area	Co-ordinates		Depth (m)	Radioactive material involved	Recovered	Total activity	Marine monitoring	Release occurred	Estimated activity released
			Latitude	Longitude	()			activity.			100000
13 Feb 1950	B-36 Bomber ¹	Pacific Ocean, off Puget Sound	-	-	-	Nuclear material	-	-	-	-	_
10 Nov 1950	Aircraft ¹	Over water, outside USA	-	-	-	Nuclear material	-	-	-	-	-
18 Mar 1953	B-36 Bomber ¹	Atlantic Ocean, off Newfoundland	-	-	-	Nuclear material	-	-	-	-	-
10 Mar 1956	B-47 Bomber ¹	Red Sea	-	-	-	Nuclear material	-	-	-	-	-
5 Mar 1958	B-47 Bomber ¹	Atlantic Ocean, off Georgia	-	-	-	Nuclear material	-	-	-	-	-
2 Jun 1962	ICBM Thor Rocket (a)	Pacific Ocean, Johnston Island	-	-	-	Nuclear test device	No	-	-	-	-
19 Jun 1962	ICBM Thor Rocket (b)	Pacific Ocean, Johnston Island	-	-	-	Nuclear test device	No	-	-	Yes	-
10 Apr 1963	Nuclear submarine SSN- 593 "Thresher" (c)	Atlantic Ocean, 100 miles east of Cape Cod	41°46' N	65° 03' W	2590	Nuclear reactor	No	1.15 PBq ²	Yes	Yes	0.04 GBq
21 Apr 1964	Satellite "Transit 5BN-3" (d)	West Indian Ocean, North of Madagascar	-	-	-	SNAP-9A generator ³	No	630 TBq	Yes	Yes	630 TBq
5 Dec 1965	Skyhawk Jet A-4E (e)	Pacific Ocean, 250 miles South of Kyushu, 70 miles east of Okinawa	27°35' N	131° 19' E	4800	1 nuclear weapon	No	-	Yes	-	-
17 Jan 1966	B-52 Bomber (f)	Mediterranean Sea, 5 miles off Palomares Spain	37° 12' N	1° 41 ' W	914	4 Nuclear weapons ⁴	Yes	-	Yes	Yes	1.37 TBq
21 Jan 1968	B-52 Bomber (g)	Arctic Ocean, Thule, Greenland	76° 32' N	69° 17' W	247	4 nuclear weapons	Partial	-	Yes	Yes	3.12 TBq

Date	Geographical area	Co-ordinates						Depth (m)	Radioactive material involved	Total activity	Remarks
		Latitude	Longitude								
1974	Strvangerhorden	-	-	-	Ir-192	1.5 TBq	Industrial radiography container lost into the sea from an oil rig				
5 Dec 1972	Block 2/7	-	-	-	Cs-137	55.5 GBq	Sources lost when the supply boat sank. All sources				
					Am-241/Be	185 GBq	shielded and inside a transport container				
					Ra-226	3.7 MBq					
					Co-60	14.8 MBq					
20 Jan 1978	"Boss Rig"	-	-	-	Ra-226	3.7 MBq	Probably lost overboard.				
28 Jan 1985	Odin	-	-	2235	Н-3	370 GBq	-				
7 Feb 1985	"Nortrym"	-	-	-	Th-232	59 kBq	Calibration source, probably blown into the sea				
12 Oct 1988	Eldfisk	-	-	-	Cs-137	55.5 GBq	-				
7 Dec 1989	-	-	-	4742	Cs-137	35 GBq	-				
					Am-241/Be	100 GBq					
9 Feb 1990	Statfyord	-	-	3423	Cs-137	55.5 GBq	-				
				3425	Am-241/Be	111 GBq					
13 Apr 1990	Gullfaks	-	-	3751	Cs-137	3.7 GBq	-				
16 Jun 1990	Eldfisk	-	-	4090	Am-241/Be	666 GBq	-				
10 Dec 1990	Statfyord	-	-	4212	Am-241	1.67 GBq	-				
31 May 1991	Byford Dolphin	-	-	1920	Am-241	166.5 kBq	-				

Date ²	Geographical area	Co-ordinates		Depth (m)	Radioactive material involved	Total activity	Remarks
		Latitude	Longitude				
23 Feb 1981	Gulf of Mexico, near Louisiana	-	-	-	Am-241	666 GBq (18 Ci)	Two sources
					Cs-137	74 GBq (2 Ci)	
4 Mar 1981	Gulf of Mexico, near Louisiana	-	-	-	H-3	222 GBq (6 Ci)	Well logging
9 Oct 1981	Gulf of Mexico, near Louisiana	_	_	_	Am-241	592 GBq (16 Ci)	Two sources
					Cs-137	55.5 GBq (1.5 Ci)	
9 Oct 1981	Gulf of Mexico, near Texas	-	-	-	Am-241	592 GBq (16 Ci)	Two sources
					Cs-137	55.5 GBq (1.5 Ci)	
3 Nov 1981	Gulf of Mexico, near Texas	-	-	-	Cs-137	<3.7 GBq (<100 mCi)	Well logging
15 Jan 1982	Gulf of Mexico, near Louisiana	-	-	-	Cs-137	74 GBq (2 Ci)	Well logging
25 Mar 1982	Pacific Ocean, near Alaska	-	-	-	Ra-226	9 MBq (2.5 μCi)	Calibration source
10 Jun 1982	Gulf of Mexico, near Louisiana	-	-	-	Am-241	592 GBq (16 Ci)	Two sources
					Cs-137	55.5 GBq (1.5 Ci)	
21 Jul 1982	Gulf of Mexico, near Louisiana	-	-	-	Am-241	666 GBq (18 Ci)	Well logging
14 Oct 1982	Gulf of Mexico, near Louisiana	-	-	-	Cs-137	<370 GBq (<10 Ci)	Well logging

Worst-case scenario - Release from a nuclear-powered vessel

+ PSYCHOLOGICAL EFFECT

Nordic Handbook for Search and Rescue in a Maritime Radiological / Nuclear Emergency (RNSARBOOK)

First Edition, 31 March 2022

A basic introduction to RN

Operational plan for RN rescue operations

SOPs

- Assessment of the incident
- Determination of restriction area
- Arrival to the scene (RCC and SRUs)
- Boarding
- Rescue ops. on board
- Rescue procedures
- Evacuation and emergency towing
- Decontamination

Assessment of the incident

1.4- Initial risk assessment

A preliminary risk assessment can be conducted by the SMC. Nevertheless, national radiation authorities should be involved in the operation as soon as possible and subsequent risk assessments should be readjusted following their advice.

Usual SAR risk assessment to be complemented by a specific RN risk assessment.

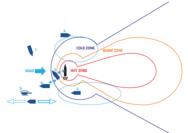
First step of the risk assessment dictated by the following questions (1.2.2 information gathering)

RN material compromised Danger of RN material being compromised Release to air Danger of release Increased radioactivity levels

Danger of increased radioactivity levels

				-
		Affirmative	Negative	Danger
1	Material	Proceed with caution	No RNSAR operation	Proceed with caution
	compromised	See lines 2 and 3 of	Proceed with standard	See this column lines 2
		this table	SAR procedures	and 3
		Continue appropriate		Continue appropriate
		risk assessment		risk assessment
2	Release to air	Proceed with caution	See line 3 of this table	Proceed with caution
		Continue appropriate		Continue appropriate
		risk assessment		risk assessment
		Consider SRU		Consider SRU
		capabilities, and		capabilities, and
		decontamination		decontamination
		possibilities and		possibilities and
		procedures		procedures
		See line 3 of this table		See line 3 of this table
3	Increased	proceed with caution	Deploy with caution	Deploy with caution
	radioactivity levels	Continue appropriate		Continue appropriate
	(over background	risk assessment.		risk assessment
	levels)			

If radiation intensity readings are available, the following aspects can be considered:


	1 mSv	Annual dose limit for the general population (including SRUs)	Low radiation doses do not pose
≥1	mSv		an acute danger to
	4-5 mSv	Yearly dose for an average person (including background radiation, medical treatments)	living organisms and developing
	10 mSv	CT scan	further sickness
≥5	0 mSv – onl	y informed, voluntary personnel in life saving work and	has a low
disa	aster mitiga	ition	probability
	100 mSv]
	150 mSv		Moderate doses of
	500 mSv	Small changes in blood. Acute Radiation Sickness	radiation can have
		symptoms could appear	effects at the

NB! Decontamination procedures only to be activated when there is a release or there is danger for a

NBI if external conditions do not permit stablishing emergency decontamination stations, an onshore alternative should citities: easy access to hot zone, fresh water supply, adequate PPE, capacity to provide clean transition to cold zone

emergency decontamination station if the condition of the patient requires expedite measures that only can be provided in another location

Step 2

Possible tasks for SAR assets while deconaminating
1. On Scene Coordinator
2. Measurement and monotroing
3. Evacuation of personnel and decontamination first/inner vessel
4. Evacuation of personnel and decontamination second vessel
5. Transportation of evacuees to shore (by vessel or helicopter)

Position Communication channel + Backup communication channel

Nature of emergency Type of assistance requested

ITEM

Vessel / Call sign

Type of vessel

1.1 - First communication

N U

POB Injuries / Damages Weather conditions

Precipitations

Wind direction and speed Swell

Equipment on board to deal with the emergency

Sight Evacuation possibilities

IF NPV → 1.2. Information gathering NPV (p. 5)

IF TRANSPORT

1.3 Information gathering transport (p. 6)

Assessment of the incident

1.2. - Information gathering NPV

		<u> </u>						
N	U	ПЕМ						
		Reactor type + thermal power						
		lectrical power output						
		Amount of nuclear fuel						
		Old or fresh fuel						
		Reactor integrity/damage, loss of coolant etc.						
		Release Time of release						
		Integrity of vessel propulsion Compartmentalization between propulsion mechanism and reactor cooling circuit is intact or damaged.						
		Recent load on nuclear fuel (At what load has it been used, and for how long, e.g., 70% capacity for 6 days.) The Nordic Handbook for Search and Rescue Operation in Nuclear / Radiological Incidents favors the use use of Sievert (Sy) as the measuring unit of radioactivity. Most of SRUs in the Nordic countries also operate with this unit. Other countries and/or actors might operate with a different measuring unit. If acquiring the radioactivity measurement in Sy proves impossible, register the number and unit offered. National radiation authorities will be able to assess the situation at hand with any measurement unit.						
		Increased radioactivity levels						
		Level of reactivity Number and unit Distance from probe to source Time of the measurement						
		Location of the reactor on board						
		RN PPE on board Personal dosimeters EEBD Other PPE Vacuum system Crew trained in RN aspects						
		Worst case scenario (risk of station black out (SBO)?)						
		Inform IAEA and EU warning systems						

→ 1.4 Initial risk assessment (p. 7) + 1.4.1 Initial risk assessment NPV (p. 8)

Without measurements

DETERMINATION OF RESTRICTION AREA

▶ With measurements

Prognosis tools

Thank you for your attention